Checking delivery availability...

Home All Updates (3681) IEEE 2016 DOTNET PRO
IEEE 2016 DOTNET PROJECT ABSTRACT A MIXED GENERATIVE-DISCRIMINATIVE BASED HASHING METHOD Hashing methods have proven to be useful for a variety of tasks and have attracted extensive attention in recent years. Various hashing approaches have been proposed to capture similarities between textual, visual, and cross-media information. However, most of the existing works use a bag-of-words method to represent textual information. Since words with different forms may have similar meaning, semantic level text similarities can not be well processed in these methods. To address these challenges, in this paper, we propose a novel method called semantic cross-media hashing (SCMH), which uses continuous word representations to capture the textual similarity at the semantic level and use a deep belief network (DBN) to construct the correlation between different modalities. To demonstrate the effectiveness of the proposed method, we evaluate the proposed method on three commonly used cross-media data sets are used in this work. Experimental results show that the proposed method achieves significantly better performance than state-of-the-art approaches. Moreover, the efficiency of the proposed method is comparable to or better than that of some other hashing methods.
  • 2016-09-01T05:37:17

Other Updates

View All Updates