Checking delivery availability...

Home All Updates (3681) MATLAB PROJECTS ABST
MATLAB PROJECTS ABSTRACT 2016-2017 LEARNING INVARIANT COLOR FEATURES FOR PERSON RE-IDENTIFICATION ABSTRACT: Matching people across multiple camera view known as person re-identification, is a challenging problem due to the change in visual appearance caused by varying lighting conditions. The perceived color of the subject appears to be different under different illuminations. Previous works use color as it is or address these challenges by designing color spaces focusing on a specific cue. In this paper, we propose an approach for learning color patterns from pixels sampled from images across two camera views. The intuition behind this work is that, even though varying lighting conditions across views affect the pixel values of same color, the final representation of a particular color should be stable and invariant to these variations, i.e. they should be encoded with the same values. We model color feature generation as a learning problem by jointly learning a linear transformation and a dictionary to encode pixel values. We also analyze different photometric invariant color spaces as well as popular color constancy algorithm for person re-identification. Using color as the only cue, we compare our approach with all the photometric invariant color spaces and show superior performance over all of them. Combining with other learned low-level and high-level features, we obtain promising results in VIPeR, Person Re-ID 2011 and CAVIAR4REID datasets.
  • 2016-07-22T04:34:47

Other Updates

View All Updates